3.3.92 \(\int \frac {\sqrt {a+a \sin (e+f x)} (A+B \sin (e+f x))}{(c+d \sin (e+f x))^3} \, dx\) [292]

Optimal. Leaf size=192 \[ -\frac {\sqrt {a} (3 A d+B (c+4 d)) \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {d} \cos (e+f x)}{\sqrt {c+d} \sqrt {a+a \sin (e+f x)}}\right )}{4 d^{3/2} (c+d)^{5/2} f}+\frac {a (B c-A d) \cos (e+f x)}{2 d (c+d) f \sqrt {a+a \sin (e+f x)} (c+d \sin (e+f x))^2}-\frac {a (3 A d+B (c+4 d)) \cos (e+f x)}{4 d (c+d)^2 f \sqrt {a+a \sin (e+f x)} (c+d \sin (e+f x))} \]

[Out]

-1/4*(3*A*d+B*(c+4*d))*arctanh(cos(f*x+e)*a^(1/2)*d^(1/2)/(c+d)^(1/2)/(a+a*sin(f*x+e))^(1/2))*a^(1/2)/d^(3/2)/
(c+d)^(5/2)/f+1/2*a*(-A*d+B*c)*cos(f*x+e)/d/(c+d)/f/(c+d*sin(f*x+e))^2/(a+a*sin(f*x+e))^(1/2)-1/4*a*(3*A*d+B*(
c+4*d))*cos(f*x+e)/d/(c+d)^2/f/(c+d*sin(f*x+e))/(a+a*sin(f*x+e))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.25, antiderivative size = 192, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 37, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.108, Rules used = {3059, 2851, 2852, 214} \begin {gather*} -\frac {\sqrt {a} (3 A d+B (c+4 d)) \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {d} \cos (e+f x)}{\sqrt {c+d} \sqrt {a \sin (e+f x)+a}}\right )}{4 d^{3/2} f (c+d)^{5/2}}-\frac {a (3 A d+B (c+4 d)) \cos (e+f x)}{4 d f (c+d)^2 \sqrt {a \sin (e+f x)+a} (c+d \sin (e+f x))}+\frac {a (B c-A d) \cos (e+f x)}{2 d f (c+d) \sqrt {a \sin (e+f x)+a} (c+d \sin (e+f x))^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(Sqrt[a + a*Sin[e + f*x]]*(A + B*Sin[e + f*x]))/(c + d*Sin[e + f*x])^3,x]

[Out]

-1/4*(Sqrt[a]*(3*A*d + B*(c + 4*d))*ArcTanh[(Sqrt[a]*Sqrt[d]*Cos[e + f*x])/(Sqrt[c + d]*Sqrt[a + a*Sin[e + f*x
]])])/(d^(3/2)*(c + d)^(5/2)*f) + (a*(B*c - A*d)*Cos[e + f*x])/(2*d*(c + d)*f*Sqrt[a + a*Sin[e + f*x]]*(c + d*
Sin[e + f*x])^2) - (a*(3*A*d + B*(c + 4*d))*Cos[e + f*x])/(4*d*(c + d)^2*f*Sqrt[a + a*Sin[e + f*x]]*(c + d*Sin
[e + f*x]))

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 2851

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[(b*c - a*d)*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(f*(n + 1)*(c^2 - d^2)*Sqrt[a + b*Sin[e + f*x]])), x]
+ Dist[(2*n + 3)*((b*c - a*d)/(2*b*(n + 1)*(c^2 - d^2))), Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n
 + 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &
& LtQ[n, -1] && NeQ[2*n + 3, 0] && IntegerQ[2*n]

Rule 2852

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[-2*(
b/f), Subst[Int[1/(b*c + a*d - d*x^2), x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3059

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b^2)*(B*c - A*d)*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n
 + 1)*(b*c + a*d)*Sqrt[a + b*Sin[e + f*x]])), x] + Dist[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(2*d*(n +
1)*(b*c + a*d)), Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f,
 A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, -1]

Rubi steps

\begin {align*} \int \frac {\sqrt {a+a \sin (e+f x)} (A+B \sin (e+f x))}{(c+d \sin (e+f x))^3} \, dx &=\frac {a (B c-A d) \cos (e+f x)}{2 d (c+d) f \sqrt {a+a \sin (e+f x)} (c+d \sin (e+f x))^2}+-\frac {(-3 a A d-B (a c+4 a d)) \int \frac {\sqrt {a+a \sin (e+f x)}}{(c+d \sin (e+f x))^2} \, dx}{4 d (a c+a d)}\\ &=\frac {a (B c-A d) \cos (e+f x)}{2 d (c+d) f \sqrt {a+a \sin (e+f x)} (c+d \sin (e+f x))^2}-\frac {a (3 A d+B (c+4 d)) \cos (e+f x)}{4 d (c+d)^2 f \sqrt {a+a \sin (e+f x)} (c+d \sin (e+f x))}+\frac {(3 A d+B (c+4 d)) \int \frac {\sqrt {a+a \sin (e+f x)}}{c+d \sin (e+f x)} \, dx}{8 d (c+d)^2}\\ &=\frac {a (B c-A d) \cos (e+f x)}{2 d (c+d) f \sqrt {a+a \sin (e+f x)} (c+d \sin (e+f x))^2}-\frac {a (3 A d+B (c+4 d)) \cos (e+f x)}{4 d (c+d)^2 f \sqrt {a+a \sin (e+f x)} (c+d \sin (e+f x))}-\frac {(a (3 A d+B (c+4 d))) \text {Subst}\left (\int \frac {1}{a c+a d-d x^2} \, dx,x,\frac {a \cos (e+f x)}{\sqrt {a+a \sin (e+f x)}}\right )}{4 d (c+d)^2 f}\\ &=-\frac {\sqrt {a} (3 A d+B (c+4 d)) \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {d} \cos (e+f x)}{\sqrt {c+d} \sqrt {a+a \sin (e+f x)}}\right )}{4 d^{3/2} (c+d)^{5/2} f}+\frac {a (B c-A d) \cos (e+f x)}{2 d (c+d) f \sqrt {a+a \sin (e+f x)} (c+d \sin (e+f x))^2}-\frac {a (3 A d+B (c+4 d)) \cos (e+f x)}{4 d (c+d)^2 f \sqrt {a+a \sin (e+f x)} (c+d \sin (e+f x))}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.
time = 7.22, size = 967, normalized size = 5.04 \begin {gather*} \frac {\left (\frac {1}{16}+\frac {i}{16}\right ) \sqrt {a (1+\sin (e+f x))} \left (\frac {(3 A d+B (c+4 d)) \left (\cos \left (\frac {e}{2}\right )+i \sin \left (\frac {e}{2}\right )\right ) \left ((-1+i) x \cos (e)+\frac {\text {RootSum}\left [-d+2 i c e^{i e} \text {$\#$1}^2+d e^{2 i e} \text {$\#$1}^4\&,\frac {(1+i) d \sqrt {e^{-i e}} f x-(2-2 i) d \sqrt {e^{-i e}} \log \left (e^{\frac {i f x}{2}}-\text {$\#$1}\right )-i \sqrt {d} \sqrt {c+d} f x \text {$\#$1}+2 \sqrt {d} \sqrt {c+d} \log \left (e^{\frac {i f x}{2}}-\text {$\#$1}\right ) \text {$\#$1}+\frac {(1-i) c f x \text {$\#$1}^2}{\sqrt {e^{-i e}}}+\frac {(2+2 i) c \log \left (e^{\frac {i f x}{2}}-\text {$\#$1}\right ) \text {$\#$1}^2}{\sqrt {e^{-i e}}}-\sqrt {d} \sqrt {c+d} e^{i e} f x \text {$\#$1}^3-2 i \sqrt {d} \sqrt {c+d} e^{i e} \log \left (e^{\frac {i f x}{2}}-\text {$\#$1}\right ) \text {$\#$1}^3}{d-i c e^{i e} \text {$\#$1}^2}\&\right ] (\cos (e)+i (-1+\sin (e))) \sqrt {\cos (e)-i \sin (e)}}{4 f}+(1+i) x \sin (e)\right )}{(c+d)^{5/2} (\cos (e)+i (-1+\sin (e))) \sqrt {\cos (e)-i \sin (e)}}+\frac {(3 A d+B (c+4 d)) \left (\cos \left (\frac {e}{2}\right )+i \sin \left (\frac {e}{2}\right )\right ) \left ((1-i) x \cos (e)-(1+i) x \sin (e)+\frac {\text {RootSum}\left [-d+2 i c e^{i e} \text {$\#$1}^2+d e^{2 i e} \text {$\#$1}^4\&,\frac {(1-i) d \sqrt {e^{-i e}} f x+(2+2 i) d \sqrt {e^{-i e}} \log \left (e^{\frac {i f x}{2}}-\text {$\#$1}\right )+\sqrt {d} \sqrt {c+d} f x \text {$\#$1}+2 i \sqrt {d} \sqrt {c+d} \log \left (e^{\frac {i f x}{2}}-\text {$\#$1}\right ) \text {$\#$1}-\frac {(1+i) c f x \text {$\#$1}^2}{\sqrt {e^{-i e}}}+\frac {(2-2 i) c \log \left (e^{\frac {i f x}{2}}-\text {$\#$1}\right ) \text {$\#$1}^2}{\sqrt {e^{-i e}}}-i \sqrt {d} \sqrt {c+d} e^{i e} f x \text {$\#$1}^3+2 \sqrt {d} \sqrt {c+d} e^{i e} \log \left (e^{\frac {i f x}{2}}-\text {$\#$1}\right ) \text {$\#$1}^3}{d-i c e^{i e} \text {$\#$1}^2}\&\right ] \sqrt {\cos (e)-i \sin (e)} (-1-i \cos (e)+\sin (e))}{4 f}\right )}{(c+d)^{5/2} (\cos (e)+i (-1+\sin (e))) \sqrt {\cos (e)-i \sin (e)}}-\frac {(4-4 i) \sqrt {d} (-B c+A d) \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )}{(c+d) f (c+d \sin (e+f x))^2}-\frac {(2-2 i) \sqrt {d} (3 A d+B (c+4 d)) \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )}{(c+d)^2 f (c+d \sin (e+f x))}\right )}{d^{3/2} \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[a + a*Sin[e + f*x]]*(A + B*Sin[e + f*x]))/(c + d*Sin[e + f*x])^3,x]

[Out]

((1/16 + I/16)*Sqrt[a*(1 + Sin[e + f*x])]*(((3*A*d + B*(c + 4*d))*(Cos[e/2] + I*Sin[e/2])*((-1 + I)*x*Cos[e] +
 (RootSum[-d + (2*I)*c*E^(I*e)*#1^2 + d*E^((2*I)*e)*#1^4 & , ((1 + I)*d*Sqrt[E^((-I)*e)]*f*x - (2 - 2*I)*d*Sqr
t[E^((-I)*e)]*Log[E^((I/2)*f*x) - #1] - I*Sqrt[d]*Sqrt[c + d]*f*x*#1 + 2*Sqrt[d]*Sqrt[c + d]*Log[E^((I/2)*f*x)
 - #1]*#1 + ((1 - I)*c*f*x*#1^2)/Sqrt[E^((-I)*e)] + ((2 + 2*I)*c*Log[E^((I/2)*f*x) - #1]*#1^2)/Sqrt[E^((-I)*e)
] - Sqrt[d]*Sqrt[c + d]*E^(I*e)*f*x*#1^3 - (2*I)*Sqrt[d]*Sqrt[c + d]*E^(I*e)*Log[E^((I/2)*f*x) - #1]*#1^3)/(d
- I*c*E^(I*e)*#1^2) & ]*(Cos[e] + I*(-1 + Sin[e]))*Sqrt[Cos[e] - I*Sin[e]])/(4*f) + (1 + I)*x*Sin[e]))/((c + d
)^(5/2)*(Cos[e] + I*(-1 + Sin[e]))*Sqrt[Cos[e] - I*Sin[e]]) + ((3*A*d + B*(c + 4*d))*(Cos[e/2] + I*Sin[e/2])*(
(1 - I)*x*Cos[e] - (1 + I)*x*Sin[e] + (RootSum[-d + (2*I)*c*E^(I*e)*#1^2 + d*E^((2*I)*e)*#1^4 & , ((1 - I)*d*S
qrt[E^((-I)*e)]*f*x + (2 + 2*I)*d*Sqrt[E^((-I)*e)]*Log[E^((I/2)*f*x) - #1] + Sqrt[d]*Sqrt[c + d]*f*x*#1 + (2*I
)*Sqrt[d]*Sqrt[c + d]*Log[E^((I/2)*f*x) - #1]*#1 - ((1 + I)*c*f*x*#1^2)/Sqrt[E^((-I)*e)] + ((2 - 2*I)*c*Log[E^
((I/2)*f*x) - #1]*#1^2)/Sqrt[E^((-I)*e)] - I*Sqrt[d]*Sqrt[c + d]*E^(I*e)*f*x*#1^3 + 2*Sqrt[d]*Sqrt[c + d]*E^(I
*e)*Log[E^((I/2)*f*x) - #1]*#1^3)/(d - I*c*E^(I*e)*#1^2) & ]*Sqrt[Cos[e] - I*Sin[e]]*(-1 - I*Cos[e] + Sin[e]))
/(4*f)))/((c + d)^(5/2)*(Cos[e] + I*(-1 + Sin[e]))*Sqrt[Cos[e] - I*Sin[e]]) - ((4 - 4*I)*Sqrt[d]*(-(B*c) + A*d
)*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2]))/((c + d)*f*(c + d*Sin[e + f*x])^2) - ((2 - 2*I)*Sqrt[d]*(3*A*d + B*(c
 + 4*d))*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2]))/((c + d)^2*f*(c + d*Sin[e + f*x]))))/(d^(3/2)*(Cos[(e + f*x)/2
] + Sin[(e + f*x)/2]))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(627\) vs. \(2(168)=336\).
time = 12.29, size = 628, normalized size = 3.27

method result size
default \(\frac {\left (-2 \sin \left (f x +e \right ) \arctanh \left (\frac {\sqrt {a -a \sin \left (f x +e \right )}\, d}{\sqrt {c d a +a \,d^{2}}}\right ) a^{2} c d \left (3 A d +B c +4 B d \right )+\arctanh \left (\frac {\sqrt {a -a \sin \left (f x +e \right )}\, d}{\sqrt {c d a +a \,d^{2}}}\right ) a^{2} d^{2} \left (3 A d +B c +4 B d \right ) \left (\cos ^{2}\left (f x +e \right )\right )+3 A \left (a -a \sin \left (f x +e \right )\right )^{\frac {3}{2}} \sqrt {a \left (c +d \right ) d}\, d^{2}-3 A \arctanh \left (\frac {\sqrt {a -a \sin \left (f x +e \right )}\, d}{\sqrt {c d a +a \,d^{2}}}\right ) a^{2} c^{2} d -3 A \arctanh \left (\frac {\sqrt {a -a \sin \left (f x +e \right )}\, d}{\sqrt {c d a +a \,d^{2}}}\right ) a^{2} d^{3}+B \left (a -a \sin \left (f x +e \right )\right )^{\frac {3}{2}} \sqrt {a \left (c +d \right ) d}\, c d +4 B \left (a -a \sin \left (f x +e \right )\right )^{\frac {3}{2}} \sqrt {a \left (c +d \right ) d}\, d^{2}-a^{2} \arctanh \left (\frac {\sqrt {a -a \sin \left (f x +e \right )}\, d}{\sqrt {c d a +a \,d^{2}}}\right ) B \,c^{3}-4 B \arctanh \left (\frac {\sqrt {a -a \sin \left (f x +e \right )}\, d}{\sqrt {c d a +a \,d^{2}}}\right ) a^{2} c^{2} d -B \arctanh \left (\frac {\sqrt {a -a \sin \left (f x +e \right )}\, d}{\sqrt {c d a +a \,d^{2}}}\right ) a^{2} c \,d^{2}-4 B \arctanh \left (\frac {\sqrt {a -a \sin \left (f x +e \right )}\, d}{\sqrt {c d a +a \,d^{2}}}\right ) a^{2} d^{3}-5 A \sqrt {a -a \sin \left (f x +e \right )}\, \sqrt {a \left (c +d \right ) d}\, a c d -5 A \sqrt {a -a \sin \left (f x +e \right )}\, \sqrt {a \left (c +d \right ) d}\, a \,d^{2}+B \sqrt {a -a \sin \left (f x +e \right )}\, \sqrt {a \left (c +d \right ) d}\, a \,c^{2}-3 B \sqrt {a -a \sin \left (f x +e \right )}\, \sqrt {a \left (c +d \right ) d}\, a c d -4 B \sqrt {a -a \sin \left (f x +e \right )}\, \sqrt {a \left (c +d \right ) d}\, a \,d^{2}\right ) \sqrt {-a \left (\sin \left (f x +e \right )-1\right )}\, \left (1+\sin \left (f x +e \right )\right )}{4 a \sqrt {a \left (c +d \right ) d}\, \left (c +d \sin \left (f x +e \right )\right )^{2} \left (c +d \right )^{2} d \cos \left (f x +e \right ) \sqrt {a +a \sin \left (f x +e \right )}\, f}\) \(628\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*sin(f*x+e))*(a+a*sin(f*x+e))^(1/2)/(c+d*sin(f*x+e))^3,x,method=_RETURNVERBOSE)

[Out]

1/4/a*(-2*sin(f*x+e)*arctanh((a-a*sin(f*x+e))^(1/2)*d/(a*c*d+a*d^2)^(1/2))*a^2*c*d*(3*A*d+B*c+4*B*d)+arctanh((
a-a*sin(f*x+e))^(1/2)*d/(a*c*d+a*d^2)^(1/2))*a^2*d^2*(3*A*d+B*c+4*B*d)*cos(f*x+e)^2+3*A*(a-a*sin(f*x+e))^(3/2)
*(a*(c+d)*d)^(1/2)*d^2-3*A*arctanh((a-a*sin(f*x+e))^(1/2)*d/(a*c*d+a*d^2)^(1/2))*a^2*c^2*d-3*A*arctanh((a-a*si
n(f*x+e))^(1/2)*d/(a*c*d+a*d^2)^(1/2))*a^2*d^3+B*(a-a*sin(f*x+e))^(3/2)*(a*(c+d)*d)^(1/2)*c*d+4*B*(a-a*sin(f*x
+e))^(3/2)*(a*(c+d)*d)^(1/2)*d^2-a^2*arctanh((a-a*sin(f*x+e))^(1/2)*d/(a*c*d+a*d^2)^(1/2))*B*c^3-4*B*arctanh((
a-a*sin(f*x+e))^(1/2)*d/(a*c*d+a*d^2)^(1/2))*a^2*c^2*d-B*arctanh((a-a*sin(f*x+e))^(1/2)*d/(a*c*d+a*d^2)^(1/2))
*a^2*c*d^2-4*B*arctanh((a-a*sin(f*x+e))^(1/2)*d/(a*c*d+a*d^2)^(1/2))*a^2*d^3-5*A*(a-a*sin(f*x+e))^(1/2)*(a*(c+
d)*d)^(1/2)*a*c*d-5*A*(a-a*sin(f*x+e))^(1/2)*(a*(c+d)*d)^(1/2)*a*d^2+B*(a-a*sin(f*x+e))^(1/2)*(a*(c+d)*d)^(1/2
)*a*c^2-3*B*(a-a*sin(f*x+e))^(1/2)*(a*(c+d)*d)^(1/2)*a*c*d-4*B*(a-a*sin(f*x+e))^(1/2)*(a*(c+d)*d)^(1/2)*a*d^2)
*(-a*(sin(f*x+e)-1))^(1/2)*(1+sin(f*x+e))/(a*(c+d)*d)^(1/2)/(c+d*sin(f*x+e))^2/(c+d)^2/d/cos(f*x+e)/(a+a*sin(f
*x+e))^(1/2)/f

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sin(f*x+e))*(a+a*sin(f*x+e))^(1/2)/(c+d*sin(f*x+e))^3,x, algorithm="maxima")

[Out]

integrate((B*sin(f*x + e) + A)*sqrt(a*sin(f*x + e) + a)/(d*sin(f*x + e) + c)^3, x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 737 vs. \(2 (176) = 352\).
time = 1.49, size = 1804, normalized size = 9.40 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sin(f*x+e))*(a+a*sin(f*x+e))^(1/2)/(c+d*sin(f*x+e))^3,x, algorithm="fricas")

[Out]

[-1/16*((B*c^3 + 3*(A + 2*B)*c^2*d + 3*(2*A + 3*B)*c*d^2 + (3*A + 4*B)*d^3 - (B*c*d^2 + (3*A + 4*B)*d^3)*cos(f
*x + e)^3 - (2*B*c^2*d + 3*(2*A + 3*B)*c*d^2 + (3*A + 4*B)*d^3)*cos(f*x + e)^2 + (B*c^3 + (3*A + 4*B)*c^2*d +
B*c*d^2 + (3*A + 4*B)*d^3)*cos(f*x + e) + (B*c^3 + 3*(A + 2*B)*c^2*d + 3*(2*A + 3*B)*c*d^2 + (3*A + 4*B)*d^3 -
 (B*c*d^2 + (3*A + 4*B)*d^3)*cos(f*x + e)^2 + 2*(B*c^2*d + (3*A + 4*B)*c*d^2)*cos(f*x + e))*sin(f*x + e))*sqrt
(a/(c*d + d^2))*log((a*d^2*cos(f*x + e)^3 - a*c^2 - 2*a*c*d - a*d^2 - (6*a*c*d + 7*a*d^2)*cos(f*x + e)^2 + 4*(
c^2*d + 4*c*d^2 + 3*d^3 - (c*d^2 + d^3)*cos(f*x + e)^2 + (c^2*d + 3*c*d^2 + 2*d^3)*cos(f*x + e) - (c^2*d + 4*c
*d^2 + 3*d^3 + (c*d^2 + d^3)*cos(f*x + e))*sin(f*x + e))*sqrt(a*sin(f*x + e) + a)*sqrt(a/(c*d + d^2)) - (a*c^2
 + 8*a*c*d + 9*a*d^2)*cos(f*x + e) + (a*d^2*cos(f*x + e)^2 - a*c^2 - 2*a*c*d - a*d^2 + 2*(3*a*c*d + 4*a*d^2)*c
os(f*x + e))*sin(f*x + e))/(d^2*cos(f*x + e)^3 + (2*c*d + d^2)*cos(f*x + e)^2 - c^2 - 2*c*d - d^2 - (c^2 + d^2
)*cos(f*x + e) + (d^2*cos(f*x + e)^2 - 2*c*d*cos(f*x + e) - c^2 - 2*c*d - d^2)*sin(f*x + e))) + 4*(B*c^2 - (5*
A + B)*c*d + (A + 4*B)*d^2 - (B*c*d + (3*A + 4*B)*d^2)*cos(f*x + e)^2 + (B*c^2 - (5*A + 2*B)*c*d - 2*A*d^2)*co
s(f*x + e) - (B*c^2 - (5*A + B)*c*d + (A + 4*B)*d^2 + (B*c*d + (3*A + 4*B)*d^2)*cos(f*x + e))*sin(f*x + e))*sq
rt(a*sin(f*x + e) + a))/((c^2*d^3 + 2*c*d^4 + d^5)*f*cos(f*x + e)^3 + (2*c^3*d^2 + 5*c^2*d^3 + 4*c*d^4 + d^5)*
f*cos(f*x + e)^2 - (c^4*d + 2*c^3*d^2 + 2*c^2*d^3 + 2*c*d^4 + d^5)*f*cos(f*x + e) - (c^4*d + 4*c^3*d^2 + 6*c^2
*d^3 + 4*c*d^4 + d^5)*f + ((c^2*d^3 + 2*c*d^4 + d^5)*f*cos(f*x + e)^2 - 2*(c^3*d^2 + 2*c^2*d^3 + c*d^4)*f*cos(
f*x + e) - (c^4*d + 4*c^3*d^2 + 6*c^2*d^3 + 4*c*d^4 + d^5)*f)*sin(f*x + e)), 1/8*((B*c^3 + 3*(A + 2*B)*c^2*d +
 3*(2*A + 3*B)*c*d^2 + (3*A + 4*B)*d^3 - (B*c*d^2 + (3*A + 4*B)*d^3)*cos(f*x + e)^3 - (2*B*c^2*d + 3*(2*A + 3*
B)*c*d^2 + (3*A + 4*B)*d^3)*cos(f*x + e)^2 + (B*c^3 + (3*A + 4*B)*c^2*d + B*c*d^2 + (3*A + 4*B)*d^3)*cos(f*x +
 e) + (B*c^3 + 3*(A + 2*B)*c^2*d + 3*(2*A + 3*B)*c*d^2 + (3*A + 4*B)*d^3 - (B*c*d^2 + (3*A + 4*B)*d^3)*cos(f*x
 + e)^2 + 2*(B*c^2*d + (3*A + 4*B)*c*d^2)*cos(f*x + e))*sin(f*x + e))*sqrt(-a/(c*d + d^2))*arctan(1/2*sqrt(a*s
in(f*x + e) + a)*(d*sin(f*x + e) - c - 2*d)*sqrt(-a/(c*d + d^2))/(a*cos(f*x + e))) - 2*(B*c^2 - (5*A + B)*c*d
+ (A + 4*B)*d^2 - (B*c*d + (3*A + 4*B)*d^2)*cos(f*x + e)^2 + (B*c^2 - (5*A + 2*B)*c*d - 2*A*d^2)*cos(f*x + e)
- (B*c^2 - (5*A + B)*c*d + (A + 4*B)*d^2 + (B*c*d + (3*A + 4*B)*d^2)*cos(f*x + e))*sin(f*x + e))*sqrt(a*sin(f*
x + e) + a))/((c^2*d^3 + 2*c*d^4 + d^5)*f*cos(f*x + e)^3 + (2*c^3*d^2 + 5*c^2*d^3 + 4*c*d^4 + d^5)*f*cos(f*x +
 e)^2 - (c^4*d + 2*c^3*d^2 + 2*c^2*d^3 + 2*c*d^4 + d^5)*f*cos(f*x + e) - (c^4*d + 4*c^3*d^2 + 6*c^2*d^3 + 4*c*
d^4 + d^5)*f + ((c^2*d^3 + 2*c*d^4 + d^5)*f*cos(f*x + e)^2 - 2*(c^3*d^2 + 2*c^2*d^3 + c*d^4)*f*cos(f*x + e) -
(c^4*d + 4*c^3*d^2 + 6*c^2*d^3 + 4*c*d^4 + d^5)*f)*sin(f*x + e))]

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sin(f*x+e))*(a+a*sin(f*x+e))**(1/2)/(c+d*sin(f*x+e))**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 443 vs. \(2 (176) = 352\).
time = 0.58, size = 443, normalized size = 2.31 \begin {gather*} -\frac {\sqrt {2} \sqrt {a} {\left (\frac {\sqrt {2} {\left (B c \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) + 3 \, A d \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) + 4 \, B d \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )\right )} \arctan \left (\frac {\sqrt {2} d \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )}{\sqrt {-c d - d^{2}}}\right )}{{\left (c^{2} d + 2 \, c d^{2} + d^{3}\right )} \sqrt {-c d - d^{2}}} + \frac {2 \, {\left (2 \, B c d \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{3} + 6 \, A d^{2} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{3} + 8 \, B d^{2} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{3} + B c^{2} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 5 \, A c d \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 3 \, B c d \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 5 \, A d^{2} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 4 \, B d^{2} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}}{{\left (c^{2} d + 2 \, c d^{2} + d^{3}\right )} {\left (2 \, d \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - c - d\right )}^{2}}\right )}}{8 \, f} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sin(f*x+e))*(a+a*sin(f*x+e))^(1/2)/(c+d*sin(f*x+e))^3,x, algorithm="giac")

[Out]

-1/8*sqrt(2)*sqrt(a)*(sqrt(2)*(B*c*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e)) + 3*A*d*sgn(cos(-1/4*pi + 1/2*f*x + 1/2
*e)) + 4*B*d*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e)))*arctan(sqrt(2)*d*sin(-1/4*pi + 1/2*f*x + 1/2*e)/sqrt(-c*d -
d^2))/((c^2*d + 2*c*d^2 + d^3)*sqrt(-c*d - d^2)) + 2*(2*B*c*d*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sin(-1/4*pi
+ 1/2*f*x + 1/2*e)^3 + 6*A*d^2*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sin(-1/4*pi + 1/2*f*x + 1/2*e)^3 + 8*B*d^2*
sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sin(-1/4*pi + 1/2*f*x + 1/2*e)^3 + B*c^2*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e
))*sin(-1/4*pi + 1/2*f*x + 1/2*e) - 5*A*c*d*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sin(-1/4*pi + 1/2*f*x + 1/2*e)
 - 3*B*c*d*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sin(-1/4*pi + 1/2*f*x + 1/2*e) - 5*A*d^2*sgn(cos(-1/4*pi + 1/2*
f*x + 1/2*e))*sin(-1/4*pi + 1/2*f*x + 1/2*e) - 4*B*d^2*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sin(-1/4*pi + 1/2*f
*x + 1/2*e))/((c^2*d + 2*c*d^2 + d^3)*(2*d*sin(-1/4*pi + 1/2*f*x + 1/2*e)^2 - c - d)^2))/f

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\left (A+B\,\sin \left (e+f\,x\right )\right )\,\sqrt {a+a\,\sin \left (e+f\,x\right )}}{{\left (c+d\,\sin \left (e+f\,x\right )\right )}^3} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((A + B*sin(e + f*x))*(a + a*sin(e + f*x))^(1/2))/(c + d*sin(e + f*x))^3,x)

[Out]

int(((A + B*sin(e + f*x))*(a + a*sin(e + f*x))^(1/2))/(c + d*sin(e + f*x))^3, x)

________________________________________________________________________________________